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Abstract. In financial engineering the problem of portfolio selection has
drawn much attention in the last decades. But still unsolved problems
remain, while on the one hand the type of model to use is still debated,
even the most common models cannot be solved efficiently, if real world
constraints are added. This is not only because the portfolio selection
problem is multi-objective, but also because constraints may turn a for-
merly continuous problem into a discrete one. Therefore, we suggest to
use a Multi-Objective Evolutionary Algorithm and compare discrete and
continuous representations. To meet constraints we apply a repair mech-
anism and examine the impact of Lamarckism and the Baldwin Effect
on several instances of the portfolio selection problem.

1 Introduction

One prominent problem in financial engineering is portfolio selection, i.e. the
problem how to invest money most profitable in multiple assets available. In
this paper we investigate the application of a Multi-Objective Evolutionary
Algorithm (MOEA), a heuristic that is virtually independent of the underly-
ing portfolio selection model used. We investigate the impact of several coding
schemes and the application of a repair mechanism together with Lamarckism
on the constrained portfolio optimization problem.

First, we give a short introduction to the portfolio selection problem in sec.
1.1 and the related work in sec. 1.2. Then we explain details of the MOEA, the
repair mechanism and the different coding schemes we applied in sec. 2. Results
on several problem instances are shown in sec. 3 and finally conclusions and an
outlook on future work are given in sec. 4 and sec. 5, respectively.

1.1 The Portfolio Selection Problem

The Markowitz mean-variance model [11, 12] gives a multi-objective optimization
problem, with two output dimensions. A portfolio p consisting of N assets with
specific volumes for each asset given by weights wi is to be found, which:

minimizes the variance of the portfolio : σp =
∑N

i=1

∑N
j=1 wi · wj · σij , (1)
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maximizes the return of the portfolio : µp =
∑N

i=1 wi · µi, (2)

subject to :
∑N

i=1 wi = 1 and (3)
0 ≤ wi ≤ 1 (4)

where i = 1, .., N is the index of the asset, N represents the number of assets
available, µi the estimated return of asset i and σij the estimated covariance
between two assets. Usually, µi and σij are to be estimated from historic data.

While the optimization problem given in equ. 1 and equ. 2 is a quadratic
optimization problem for which computationally effective algorithms exist, this
is not the case if real world constraints are added:

Cardinality constraints restrict the maximal number of assets used in the
portfolio,

∑N
i=1 sign(wi) = K.

Buy-in thresholds give the minimum amount that is to be purchased, i.e.
wi ≥ li ∀ wi > 0; i = 1, .., N .

Roundlots give the smallest volumes ci that can be purchased for each asset,
wi = yi · ci; i = 1, .., N and yi ∈ Z.

These constraints are often hard constraints, i.e. they must not be vio-
lated. Other real world constraints like sector/industry constraints, immuniza-
tion/duration matching and taxation constraints can be considered as soft con-
straints and should be implemented as additional objectives, since this yields
the most information. While we do consider the above hard constraints, we cur-
rently do not include soft constraints in our experiments, but plan to examine
their impact in our future work.

1.2 Related Work

One of the first groups to apply Genetic Algorithms (GA) on the portfolio se-
lection problem were Tettamanzi et al. [1, 10, 9]. They transformed the multi-
objective optimization problem (MOOP) into a single-objective problem by using
a trade-off function. They used multiple GA populations with individual trade-
off coefficients to identify the complete Pareto front. More recently, Crama et al.
applied Simulated Annealing (SA) to the portfolio selection problem [5]. They
especially pointed out that SA and similar heuristics like GA have the major
advantage that they can be easily applied to any kind of portfolio selection
model with arbitrary constraints without much modification. For the same rea-
son Beasley et al. compared Tabu Search, SA and GA on the portfolio selection
to evaluate their performance [4]. They solved the MOOP by interpreting one
objective as constraint and optimizing the other one. The constraint was altered
iteratively to get the complete Pareto front. As a conclusion they found that no
individual heuristic performed better than the other ones and that only a pooled
result of all three heuristics produced a satisfying Pareto front.

Unfortunately, the papers using Evolutionary Algorithms (EA) did not ap-
ply multi-objective EAs (MOEA) to the portfolio selection problem, although
MOEA have shown to be very useful on similar multi-objective optimization
problems [8, 6, 16].
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2 Multi-Objective Evolutionary Algorithm

Our MOEA strategy uses a generational GA population strategy with a popula-
tion size of 500 individuals. We apply tournament selection with a tournament
group size of 8 together with objective space based fitness sharing with a sharing
distance of σshare = 0.01 [7]. The selection prefers individuals that are better
than other individuals in at least one objective value, i.e. which are not dom-
inated by other individuals. To maintain the currently known Pareto front we
use an archive of 250 individuals and use this archive as elite to achieve a faster
speed of convergence. Details of this MOEA strategy can be found in [13]. We
use one-point mutation with a mutation probability of pm = 0.1 and a discrete
3-point-crossover with pc = 1.0 on all genotypes. For binary genotypes bit-flip
mutation is used and in case of the real-valued genotype a gaussian random num-
ber with σ = 0.05 is added to a random decision variable. These parameters for
the operators were selected to allow a fair comparison. The general parameters
were found in preliminary experiments [14].

As representations we decided to compare bit-string based genotypes using
binary or gray-coding to a real-valued genotype. On discretized problem in-
stances, caused by additional roundlot constraints, we also investigated the size
of the bit-string from a 32bit ‘continuous’ and a 7bit ‘discrete’ representation.

Preliminary experiments indicated that pareto-optimal solutions for the port-
folio selection problem are rarely composed of all available assets, but only a lim-
ited selection of the available assets, especially in case of cardinality constraints,
see Fig. 2. This selection problem resembles a one-dimensional binary knapsack
problem, which has already been addressed by means of EA using a binary repre-
sentation. Therefore, we suggest to use the very same representation in addition
to the vector of decision variables W, see Fig. 1. Each bit of the bit-string B
determines whether the associated asset is an element of the portfolio or not, so
that the actual value of the decision variable is w′

i = bi ·wi. This is the value that
is processed by the following repair algorithm. With this hybrid representation
it is much easier for the GA to add or remove the associated assets simply by
mutating the additional bit-string. The hybrid representation is altered by mu-
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Fig. 1. Comparing the standard repre-
sentation to the hybrid representation.

Fig. 2. Solutions generated by EA with
the hybrid representation on the DAX
data set with 81 assets as given in [2].
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tating/crossing each genotype element (B and W) separately from each other.
The extended GA is abbreviated KGA (Knapsack-GA).

The GA implementation used encodes each decision variable in the desired
range, wi ∈ {0, 1}, but especially the additional constraints given in sec. 1.1
are rather restrictive. Therefore, it is impractical to outright reject all infeasible
solutions. This is the reason why we applied a repair algorithm, which searches
for the next feasible solution.

To do so the repair algorithm first removes all surplus assets from the port-
folio to meet the cardinality constraints by setting the N − K smallest values
of wi to zero and also those assets whose weights are below the given buy-in
threshold. For those wi > 0 remaining, the weights are normalized such that
w′

i = li + wi−li∑
(wi−li)

. To meet round-lot constraints the algorithm rounds the
wi > 0 to the next round-lot level, w′′

i = w′
i − (w′

i mod ci), after cardinal-
ity repair, buy-in repair and normalization was applied. The remainder of the
rounding process,

∑
i(w

′
i mod ci), is spent in quantities of ci on those w′′

i , which
had the biggest values for w′

i mod ci until all of the remainder is spent. Since the
repair algorithm is deterministic, an individual is always assigned to the same
phenotype after repair if the genotype did not change.

Since in a basic implementation the repair mechanism would only determine
the phenotype of a GA individual, we compare the performance of the GA with
and without Lamarckism to further examine the effect of the repair mechanism.
With Lamarckism alters genotype of a GA individual is altered by coding the
phenotype back onto the genotype.

3 Experimental Results

The comparison of the different GA implementations is performed on a public
benchmark data set provided by Beasley [2]. The numerical results presented here
were performed on the Hang Seng data set with 31 assets. On this data set we
use several combinations of real world constraints to compare the performance of
the different GA representations. First, we compare the cardinality constrained
portfolio selection problem without and with use of Lamarckism. In a second
set of experiments we also add real-world constraints like buy-in thresholds and
roundlot constraints.

To compare the performance of the MOEAs we use the S-metric that cal-
culates the hyper volume under the Pareto front [17]. We take the percentage
difference (∆area) between the hyper volume of the Pareto front found by the
MOEA and a reference solution of the unconstrained portfolio selection problem,
compare Fig. 2, ∆area is to be minimized.

To obtain reliable results we repeat each GA experiment for 50 times for each
parameter setting and problem instance. A single GA run is terminated after
100,000 fitness evaluations. We then calculate the mean value, the standard
deviation, the maximum and minimum values and the 90 % confidence intervals
of the ∆area value to evaluate the performance of each GA setting.
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Fig. 3. ∆area for the experiments on the Hang Seng data set li = 0 and ci = 0 (1:
GA binary-coding, 2: GA gray-coding, 3: GA real-valued, 4: KGA binary-coding, 5:
KGA gray-coding, 6: KGA real-valued)

Fig. 4. ∆area on the Hang Seng data set
with K = N , li = 0 and ci = 0

Fig. 5. ∆area on the Hang Seng data set
with K = 4, li = 0 and ci = 0

3.1 Results without Additional Constraints

In our experiments we distinguish further between experiments with and without
Lamarckism. On the one hand Lamarckism is said to cause premature conver-
gence, while the Baldwin effect on the other hand leads to a neutral search space,
which may enable the GA to escape local optima, see [15] for further details. We
show that the applied repair mechanism has a quite unexpected result on the
constrained portfolio selection problem if Lamarckism is not applied.

Without Lamarckism. On the simplest problem instance without additional
constraints the behavior of the hybrid KGA representation clearly outperforms
the standard representation on all problem instances, see Figs. 3 - 5. Without
cardinality constraints the hybrid KGA nearly instantly converges to very good
values of ∆area independent of the coding scheme used for the genotype. Only in
case of K = 2 the real-valued KGA performs slightly worse than the bit-string
based KGAs.

When the standard GA is used on the portfolio selection problem without
cardinality constraints, the different genotype coding schemes can be clearly dis-
tinguished, see Fig. 4. Here the real-coded GA performs worst, while the binary-
coding is better than the gray-coding. But when cardinality constraints are used
no such distinctions can be made anymore. This is due to the combined effect of
cardinality constraints and the applied repair mechanism. The repair algorithm
always selects the K biggest wi to be part of the portfolio. The remaining wi are
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Fig. 6. ∆area for the experiments on the Hang Seng data set with Lamarckism, li = 0
and ci = 0 (1: GA binary-coding, 2: GA gray-coding, 3: GA real-valued, 4: KGA
binary-coding, 5: KGA gray-coding, 6: KGA real-valued)

Fig. 7. ∆area on the Hang Seng data with
Lamarckism, K = N , li = 0 and ci = 0

Fig. 8. ∆area on the Hang Seng data with
Lamarckism, K = 4, li = 0 and ci = 0

normalized to values of w′
i ≈ 1/K. The other N − K asset weights are subject

to genetic drift, since there is no selection pressure toward sparse vectors W. If
any of the previously selected wi drops out of the portfolio due to mutation or
crossover, the biggest of the N − K asset weights takes its place and the values
are again normalized to w′

i ≈ 1/K. This way the standard GA only searches the
subspace of portfolio of size K with weights wi ≈ 1/K.

With Lamarckism. With cardinality constraints and Lamarckism the stan-
dard GA inherits some properties of the hybrid KGA. Since the repair mech-
anism removes the surplus assets from the portfolio and Lamarckism removes
them from the genotype, the standard GA also acts on a sparse vector of W
like the hybrid KGA. This way the standard GA can add and remove assets to
and from the portfolio as easily as the hybrid KGA. Now the standard GA is
also able to explore the complete subspace of possible portfolio combinations, see
Fig. 6. The standard GA even outperforms the KGA reading speed convergence
and reliability of the results for K < N .

Without cardinality constraints this effect is not as strong, although the
results of the standard GA are much better and the speed of convergence is
increased notably, see Fig. 7. Here Lamarckism removes neutrality from the
search space, which enables the standard GA to remove surplus assets more
efficiently and thereby the standard GA converges much faster, compare Fig. 7
to Fig. 4.
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Fig. 9. ∆area for the experiments on the
Hang Seng data set with li = 0.08 and
ci = 0.008 (1: GA 32bit binary-coding,
2: GA 7bit binary-coding, 3: GA 32bit
gray-coding, 4: GA 7bit gray-coding, 5:
GA real-valued)

Fig. 10. ∆area on the Hang Seng data set
with several cardinality constraints, li =
0.08 and ci = 0.008

But also the performance of the KGA is increased due to Lamarckism. Al-
though no better results are found the KGA converges significantly, faster espe-
cially with increasing cardinality constraints, compare Fig. 8 to Fig. 5.

Unfortunately, all the GA representations perform so well on this problem
instance with K < N that no clear distinctions can be made. Only for K = N
the real-valued GA converges slower than the bit-string based GA, see Fig. 7,
but outperforms both bit-string based standard GAs regarding the quality of
the results, see Fig. 6. But these differences also vanish with the application of
the hybrid KGA.

3.2 Results with Additional Constraints

With additional real-world constraints the previously continuous portfolio selec-
tion problem becomes a discrete one. Therefore, we extend the group of exam-
ined representations with an additional discrete representation using a bit-string
limited to 7bit instead of 32bit.

To increase comprehensibility we examine the results separately, first for the
standard GA and then for the hybrid KGA representation.

Standard GA without Lamarckism. Here the very same effect as in sec. 3.1
occurs: the standard GA implementation suffers from premature convergence,
see Fig. 9 and Fig. 10. Again this is due to the neutrality of the search space
caused by the repair mechanism. But now it applies to all problem instances
since even without cardinality constraints the additional buy-in threshold acts
like a cardinality constraint of K = 12. The neutral search space causes the GA
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Fig. 11. ∆area for the experiments on the Hang Seng data set with Lamarckism,
li = 0.08 and ci = 0.008 (1: GA 32bit binary-coding, 2: GA 7bit binary-coding, 3:
GA 32bit gray-coding, 4: GA 7bit gray-coding, 5: GA real-valued)

Fig. 12. ∆area on the Hang Seng data set
with Lamarckism, K = N , li = 0.08 and
ci = 0.008

Fig. 13. ∆area on the Hang Seng data set
with Lamarckism, K = 4, li = 0.08 and
ci = 0.008

to search a subspace of the true search space and again the subspace consists
only of portfolios of size K with weights wi ≈ 1/K.

Fig. 10 shows the convergence behavior on each problem instance. On each
problem instance a bit-string based representation is compared to the real-valued
representation. Basically, they all converge to the very same local optimum in
the previously described subspace, but the real-valued representation performs
slightly worse than the bit-string based representations.

Standard GA with Lamarckism. Again with Lamarckism the negative effect
of the neutral search space is removed, see Fig. 11. And again the standard
GA becomes much more efficient, since it is able to search the space of sparse
portfolios more efficiently. The convergence speed of the standard GA once more
matches the behavior of the hybrid KGA in the previous examples, see Fig. 12
and Fig. 13.

Regarding the different coding schemes the real-valued coding performs slightly
better than the 32bit codings. But comparing the 7bit coding to the 32bit coding,
the 7bit coding performs much better than the 32bit coding and also outper-
forms the real-valued representation, see also Fig. 12 and Fig. 13. Most likely
this is due to the reduced search space of the 7bit coding and the greater impact
of the mutation operator. While the confidence intervals for the different repre-
sentations are clearly separated for K = N and K = 4, the differences decrease
with increasing cardinality constraints.
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Fig. 14. ∆area for the experiments on the Hang Seng data set with li = 0.08 and
ci = 0.008 (1: KGA 32bit binary-coding, 2: KGA 7bit binary-coding, 3: KGA 32bit
gray-coding, 4: KGA 7bit gray-coding, 5: KGA real-valued)

Fig. 15. ∆area on the Hang Seng data set
with K = N , li = 0.08 and ci = 0.008

Fig. 16. ∆area on the Hang Seng data set
with K = 4, li = 0.08 and ci = 0.008

Hybrid KGA without Lamarckism. Even without Lamarckism the hybrid
KGA is not prone to the same premature convergence as the standard GA,
compare Fig. 14 to Fig. 11. But while without cardinality constraints the hybrid
KGA performs rather well, see Fig. 15, this is not the case with increasing
cardinality constraints, see Fig. 16. Although the mean results of the hybrid
KGA are still better than the results of the standard GA and the best runs of
the hybrid KGA are considerably better, the overall results of the KGA without
Lamarckism can be rejected as being too bad and also too unreliable.

When comparing the different coding schemes, again the real-valued KGA
performs worst on all problem instances, see Fig. 14. The 32bit codings usually
perform slightly better than the real-valued representation, except for some ex-
treme outliers in case of the 32bit binary-coding for K = N . But the confidence
intervals between the 32bit codings and the real-valued coding are not as clearly
separated. But the confidence intervals for 32bit and 7bit coding are clearly sep-
arated at least for weak cardinality constraints, K = N and K = 6, and show
that the 7bit coding outperforms the 32bit coding. With increasing cardinality
constraints these differences are again leveled out. Regarding the comparison
between binary and gray-coding no reliable conclusions can be made, since the
confidence intervals have a significant overlap.

Hybrid KGA with Lamarckism. The application of Lamarckism gives the
driving edge to the hybrid KGA, see Fig. 17. In some instances the results are
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Fig. 17. ∆area for the experiments on the Hang Seng data set with Lamarckism,
li = 0.08 and ci = 0.008 (1: KGA 32bit binary-coding, 2: KGA 7bit binary-coding, 3:
KGA 32bit gray-coding, 4: KGA 7bit gray-coding, 5: KGA real-valued)

Fig. 18. ∆area on the Hang Seng data set
with Lamarckism, K = N , li = 0.08 and
ci = 0.008

Fig. 19. ∆area on the Hang Seng data set
with Lamarckism, K = 4, li = 0.08 and
ci = 0.008

so good, that we believe the fixed size of the archive population may become a
limiting element.

Comparing the different representations the real-valued representation per-
forms again worst. Second best is the binary-coding, but astonishingly the previ-
ously observed advantage of the 7bit coding is reversed in this case. Gray-coding
on the other hand performs best on all problem instances and again the confi-
dence intervals indicate a significant advantage of the 7bit gray-coding over the
32bit gray-coding. In this case the general advantage of the gray-coding is even
maintained for increasing cardinality constraints and actually becomes more and
more obvious.

Regarding the speed of convergence the gray-coding is slightly slower in the
beginning for K = N , see Fig. 18, but it catches up and finally produces the best
results. With increasing cardinality constraints the gray-coding performs better
and outperforms the other coding schemes regarding speed of convergence and
the quality of the final result, see Fig. 19 and Fig. 17.

4 Discussion

There are several conclusions that can be drawn from the experimental results
presented in this paper. First, we were able to prove that the proposed hybrid
KGA representation performed better than the standard GA on this problem
class regardless of the problem instance and the genotype representation used
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for W. The KGA produced better results and converged faster than the stan-
dard GA. We could support the argument, that the advantage of the hybrid
KGA is based on the efficient removal of surplus assets, by reproducing the very
same effect for the standard GA on the problem instances without additional
constraints, with cardinality constraints and Lamarckism. Although the posi-
tive effect of Lamarckism on the standard GA was not as strong if real-world
constraints were added.

We also showed that the standard GA without Lamarckism is prone to pre-
mature convergence, since the neutrality of the search space causes the GA to
get stuck in an suboptimal subspace. The KGA on the other hand was not prone
to such premature convergence even without Lamarckism.

Regarding the different coding schemes we were able to show that on aver-
age the real-valued coding performed worst on all problem instances. But there
were only negligible differences between the binary and the gray-coding if no
additional constraints were applied. We could also prove that with additional
constraints the ‘discrete’ 7bit coding performed better than the 32bit coding on
both bit-string based codings, most likely because the mutation and crossover
operators become more effective.

Overall, the hybrid KGA with 7bit gray-coding and Lamarckism turned out
to be best on the most interesting problem instances with additional real-world
constraints.

5 Future Work

Our future work will concentrate on evaluating the performance of alternative
MOEA implementations on the portfolio selection problem. We believe that the
choice of the MOEA strategy will become crucial, if more real-world constraints
are added like sector/industry constraints, immunization/duration matching and
taxation constraints, which may increase the output dimension of the portfolio
selection problem.

Another area of improvement could be the application of more sophisticated
local search heuristics. There are numerous alternatives to the simple search for
feasible solutions, but they have to be carefully evaluated regarding their ability
to handle real-world constraints.

Finally, we plan to extend our experiments to other models for portfolio
selection like the Black-Litterman model [3], since the Markowitz mean-variance
model suffers from two major drawbacks: first, it is rather complicated to gather
the necessary data and estimate µi and σij from historic data and secondly, the
Markowitz model is very sensitive to estimation errors of µi and σij .
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