
TCML Cluster Documentation
December 19, 2024

Contents

1 Introduction 2
1.1 Overview . 2
1.2 Login Nodes . 2
1.3 Slurm . 2
1.4 Singularity . 2

2 Step-by-step guide 3
2.1 Upload your Data and Script . 3
2.2 Log in . 3
2.3 Configure the Singularity Container . 3
2.4 Create the .sbatch file . 3
2.5 Run the project with the sbatch command . 4
2.6 Wait until the job is done . 4
2.7 Check the output or errors of the job . 5

3 Example 5

4 Frequently Asked Questions 7
4.1 Why does my job not start? . 7
4.2 Why is my job taking so long? . 7
4.3 Why is the login node slow? . 7

5 Components 8
5.1 Computing Nodes . 8
5.2 Login Nodes . 8
5.3 Directories . 8
5.4 Slurm . 8

5.4.1 Important Slurm Commands . 9
5.4.2 Partitions . 9
5.4.3 Priority Determination . 9

5.5 Singularity . 9
5.5.1 How to build an image . 9

1

1 Introduction

This Document is a guideline for using the Training Center for Machine Learning (TCML) GPU
Cluster.

1.1 Overview

The cluster contains:

- 3 login Nodes WITHOUT GPU (2 virtual machines, 1 physical)

- 34 nodes with 4x 1080ti [1-17,20-36]

- 2 nodes with 4x A4000 [18-19]

- 4 nodes with 8x 2080ti [36-40]

- storage space for the datasets

1.2 Login Nodes

Users will connect to one of the 3 login nodes where, using the sbatch command, they will queue
a job to the cluster. This job is any machine learning script you wish to train.

1.3 Slurm

The jobs are scheduled by Slurm, a job management system. The greater the required processing
power, the less priority the job will have. If all nodes are occupied, the job will be queued and will
not start. Check the queue with the squeue command.

1.4 Singularity

In order to prepare the environments you need for the script, Singularity is used. This container
manager takes a recipe with all the required packages and builds an image, which you will then
use in the .sbatch file to run your script.

2

2 Step-by-step guide

IMPORTANT

Change your password as is described in the message of the day, which is displayed in the
terminal once you log in!

2.1 Upload your Data and Script

With the command:

scp SOURCE USERNAME@login1.tcml.uni-tuebingen.de:~/

This command will copy the SOURCE file from your computer to your home folder in the cluster.
Use the -r flag if you wish to copy entire directories.

IMPORTANT

Do NOT store more than 5 million files or more than 6 TB of data. If the storage is full,
the system will crash for everybody and other users will be affected.

2.2 Log in

From the university network, including eduroam or VPN1, you can use the following command to
log in to the cluster:

ssh USERNAME@login1.tcml.uni-tuebingen.de

This command will connect you to login node 1. For another login node simply swap login1 with
login2 or login3 (all have the same functionality, more info in section 5.2). If logging in to a node
does not work, simply try another one.

IMPORTANT

Reminder! The login nodes DO NOT HAVE A GPU. Scripts executed directly on the node
will take longer than usually. Do not forget to submit your job in the queue with the sbatch
command, as desribed in the next steps.

2.3 Configure the Singularity Container

Easiest way to do this is to check in /common/singularityImages/recipes/ whether there is
already one container available that fits your needs.
If not, then one needs to either be created from scratch or an existing one modified.

2.4 Create the .sbatch file

Create a file with the extension .sbatch (for example project1.sbatch). There is an example file in
/common/userGuides/tutorialNetwork/. It will then need to have the following content:

#!/bin/bash

#SBATCH --job-name=JobName

give it any name you want

#SBATCH --cpus-per-task=4

max 24 per node

1https://uni-tuebingen.de/einrichtungen/zentrum-fuer-datenverarbeitung/dienstleistungen/netze/

netzzugang/remote-zugang-vpn/

3

https://uni-tuebingen.de/einrichtungen/zentrum-fuer-datenverarbeitung/dienstleistungen/netze/netzzugang/remote-zugang-vpn/
https://uni-tuebingen.de/einrichtungen/zentrum-fuer-datenverarbeitung/dienstleistungen/netze/netzzugang/remote-zugang-vpn/

#SBATCH --partition=day

choose out of day, week, month depending on job duration

#SBATCH --mem-per-cpu=3G

max 251GB per node

#SBATCH --gres=gpu:1

how many gpus to use

each node has 4 gpus

#SBATCH --time=10:00

job length: the job will run either until completion or until this timer runs out

#SBATCH --error=job.%J.err

%J is the job ID, errors will be written to this file

#SBATCH --output=job.%J.out

the output will be written in this file

#SBATCH --mail-type=ALL

write a mail if a job begins, ends, fails, gets requeued or stages out

options: NONE, BEGIN, END, FAIL, REQUEUE, ALL

#SBATCH --mail-user=*****@uni-tuebingen.de

your email

here will be your commands for running the script

Additional Information

Any .sbatch file works in two ways: the lines starting with #SBATCH contain arguments for
the slurm workload manager. It will use these arguments for the training job it is starting.
From a bash point of view, these lines are arguments since they start with a ’#’.
The lower part of the file – without the ’#’-signs – are bash commands, which will be
executed on the compute node once slurm started the job.

2.5 Run the project with the sbatch command

sbatch project1.sbatch

This command will QUEUE the job defined in the project1.sbatch file (using slurm, see section 5.4).
It will only start computing right away if there are enough resources available.

IMPORTANT

If there are not enough nodes available to start your job, it will have to wait for others to
finish. Run the squeue command to see an overview of the queue.

The place of your job in the queue is determined by Slurm, see section 5.4.3 for more details.

2.6 Wait until the job is done

If you have enabled email notifications in the .sbatch file, you will get an email when it is done,
otherwise you will have to check manually.

VERY IMPORTANT

If you encounter problems or have questions, please consult the Frequently Asked Questions
before writing an email to the system Admin.

4

2.7 Check the output or errors of the job

The output can be found in job.JOBNUMBER.out and the errors in job.JOBNUMBER.err which
will be created in the same directory as the .sbatch file.

3 Example

We copy the tutorial training algorithm, which will train a model on the CIFAR dataset, to the
home directory.
Next step is to configure the already existing sbatch file (everything is already prepared, you just
need to change the email):
Everything until the mail can be left as is.

#SBATCH --mail-user=MAILUSERNAME@uni-tuebingen.de

your mail address

Here is the command to copy the dataset from the datasets folder to the scratch folder. This is
done so it will be deleted from the scratch folder after the job is done so it won’t take up space.

####

#b) copy all needed data to the jobs scratch folder

####

cp -R /common/datasets/MNIST/ /scratch/$SLURM_JOB_ID/

To execute code in a singularity container, use this command. This example is for python. The
whole command needs to be in one line (the way it is in the provided sbatch file).

singularity exec --nv /common/singularityImages/TCML-CUDA12_4_TF2_17_PT_2_4.simg

python3 ~/tutorialNetwork/cifar_tutorial.py

Next, with the sbatch command we queue the job. Because there is a free node for me, it will start
immediately, and we can see it running.
In these files, you can see the output and the errors of the job.

Figure 1: Job 1183070 is my job, and once it is started, two files will be created: job.1183070.err
and job.1183070.out.

5

https://www.cs.toronto.edu/~kriz/cifar.html

Figure 2: Another example of the output of squeue where we can see jobs waiting in the queue.
The jobs with ’(Priority)’ and ’(Resources)’ are submitted, but have not been started yet.

6

4 Frequently Asked Questions

4.1 Why does my job not start?

At first, check squeue. There are two possibilities:

1. Your job does not appear in the output of squeue. This means, there probably was an error
in the .sbatch file. Read the job.JOBNUMBER.err file for more information. Another reason
may be, that the directory to which slurm should write its output files does not exist. In this
case, the job does not get submitted, without an error output.

2. Your job does appear in the output of squeue and has not started yet. This means, that
the cluster is full and all nodes are already occupied. In this scenario, your job will be in the
queue, waiting for nodes to be free. The place of the job in the queue is easy to check with the
squeue command that gives you an overview of all nodes and the queue. More information
about priority in the queue can be found in section 5.4.3. You can see an example of how
this looks in Figure 2.

4.2 Why is my job taking so long?

A reason for this may be, that you didn’t properly submit your job to slurm (with the command
sbatch FILE.sbatch) but just executed the sbatch file directly (with sh FILE.sbatch or similar).
See also the info box in section 2.4.
The login nodes DO NOT have a GPU! If you run capacity intensive scripts (like model training)
directly on the node, it will take a long time for these to be completed. The login node is only
an interface between you and the cluster. All jobs need to be submitted to the cluster with the
sbatch function, as described in section 2.

4.3 Why is the login node slow?

Training algorithms usually need big datasets that take up a lot of space. For this reason, users
should copy the dataset to the scratch directory:

/scratch/$SLURM_JOB_ID/

If this is not done, the storage will be overworked and the node will slow down for everyone.

7

5 Components

5.1 Computing Nodes

As mentioned in the Introduction, there are 40 nodes. If you want to choose a specific Node and
GPU for your job, this is how:
When writing the .sbatch file, the relevant field will need to be changed:

#SBATCH --gres=gpu:1080ti:4

to use 4 (the maximum amount!) 1080ti GPUs

#SBATCH --gres=gpu:2080ti:8

to use 8 (the maximum amount!) 2080ti GPU

Or

#SBATCH --gres=gpu:A4000:1

to use 1 (the maximum amount is 4) A4000 GPUs

The nodes with A4000 or 1080ti GPUs have 4 GPUs per node, while the nodes with 2080ti have 8
GPUs per node. If you try to acquire more GPUs on a single node, slurm will complain and not
start your job.

5.2 Login Nodes

All login nodes have the directory /home/ mounted on the shared cluster file system, therefore it
appears as they have the same files on them. The first two (login1 and login2) are virtual machines
with identical hardware resources; they have 4 cores, 16 GB of RAM and NO GPU. login3 is a
physical machine and more powerful, with 12 cores and 256 GB of RAM, but still NO GPU.
The intention here is for login1 and login2 to be used most of the time, since users only need to
upload their files, set up the singularity container and schedule the sbatch job. Thus, the nodes
don’t need much computing power. The reason for having multiple login nodes is that if one is
down for maintenance, users can still use the other. Additionally, login3 is much more powerful
and is intended for remote development.

5.3 Directories

The main directory is the /home directory. Here, every user has their own folder where they can
keep their files.
A few useful scripts, datasets and singularity recipies can be found in /common:

1. /datasets: some of the most well-known machine learning datasets. The user must imple-
ment the data reading pipeline themselves.

2. /scripts: some of the most well-known training algorithms

3. /share: here you can share files with other users

4. /singularityImages: helpful singularity images and recipes

5. /userGuides: more guides and a tutorial script

IMPORTANT

Keep your home directory small and delete all files you don’t need. Storage space does not
grow on trees.
Also, the home directory does not have a backup, so keep your data safe on your own
computer.

5.4 Slurm

For more detailed information visit https://slurm.schedmd.com/quickstart.html
Slurm is a job scheduling system. This is the program that decides when your script will be run.
The priority is determined by the amount of resources the job needs and the time it waited for

8

https://slurm.schedmd.com/quickstart.html

other jobs to complete.
Please note, that we are not running the latest version of slurm on the cluster. Check the exact
version with slurmctld -V before reading slurm’s documentation.

5.4.1 Important Slurm Commands

sbatch <projectName.sbatch>: Queues a job described by a .sbatch file.
scancel <jobID>: cancels the job and removes it from the queue if you are the owner of the job.
With -U, it will cancel all your jobs.
squeue: Provides an overview over all queued jobs. −−start provides the estimates of job start
times, if available.
sinfo: Provides an overview over the allocated nodes by each partition. Use -s for more detailed
information about the nodes. Use -o %P, %D, %c, %X, %m, %f for information of how many
resources are used in detail.

5.4.2 Partitions

Partition Time limit Number of nodes
test 15 min 3
day 24 h 38

week 7 days 27
month 30 days 10

Notice: Any job that exceeds the time limit of its partition will get canceled. Check the details for
which node belongs to which queue with sinfo.

5.4.3 Priority Determination

The priority of a job is determined by a combination of 2 factors: The age of the job and the fair
share factor.

1. Job age: The longer a job waits in the queue, the higher priority it will get. The maximum
value is reached after 7 days. The contribution of Job age factor is 20% (2/10) to the total
priority determination.

2. Fairshare: This factor is calculated by Slurm depending on how many resources a user and
their user group (department) used in the past. For each job a cost value is calculated. The
costs of various resources are as follows: 1 CPU costs 1/s, 1 GPU costs 7/s, 1 GB memory
costs 0.11/s. The job cost value decreases over time and is halved after 7 days. Computations
on the test partition are for free and dont count in the fairshare factor. The contribution of
fairshare factor is 80% (8/10) to the total priority determination.

5.5 Singularity

Singularity is a platform for managing containers, in order to have any environment you want on
the cluster.

5.5.1 How to build an image

The images are the environments you use. They are built from recipes.
In /common/singularityImages you will find one base image with some basic python libraries:

- python version 3.11

- pytorch

- tensorflow

- keras

- opencv

You can check a singularity image by using the following command:

9

singularity inspect IMAGENAME

If you need something else for your project, in /common/singularityImages/recipes there are
many singularity recipes for building images.
In order to build an image from a provided recipe, you should first copy the recipe locally, preferably
in a directory:

mkdir singularity_build

cd singularity_build

scp /common/singularityImages/recipes/TCML-CUDA12_4_TF2_17_PT_2_4.recipe ./my.recipe

Then we build the image with the following command:

singularity build --fakeroot new_image.simg my.recipe

There is a second way of building an image: you take an existing image or recipe and make a
sandbox environment. These are more flexible but require a little more work. First, create a new
directory and create the image:

mkdir singularity_build

cd singularity_build

singularity build --fakeroot --sandbox sandbox_image my.recipe

Then you open a shell for this image and use pip install as you would normally:

singularity shell --writable sandbox_image

pip install packageName

exit

singularity build --fakeroot new_image.simg sandbox_image

The image can then be used in the .sbatch file, as described in section 3.

10

	Introduction
	Overview
	Login Nodes
	Slurm
	Singularity

	Step-by-step guide
	Upload your Data and Script
	Log in
	Configure the Singularity Container
	Create the .sbatch file
	Run the project with the sbatch command
	Wait until the job is done
	Check the output or errors of the job

	Example
	Frequently Asked Questions
	Why does my job not start?
	Why is my job taking so long?
	Why is the login node slow?

	Components
	Computing Nodes
	Login Nodes
	Directories
	Slurm
	Important Slurm Commands
	Partitions
	Priority Determination

	Singularity
	How to build an image

